Aimsun Ride offers a gRPC-based (Remote Procedure Call framework) API which enables flexible server-client implementations with external Python modules that define and establish the (event- and time-based) communication patterns between external modules and Aimsun Ride – in this case, the integrator modules. The integrator modules may act either as a client, i.e., requesting dynamically (at simulation runtime) different types of information from the supply network (e.g., travel times), or as a server, i.e., Aimsun Ride is requesting/giving information from/to the integrator modules (e.g., trips, trip and vehicle status events). In addition to the above features, Aimsun Ride offers a path computation interface which may be used by externally integrated modules for optimal passenger and vehicle routing considering cost (travel time) minimization under different conditions (free flow, simulated and historical travel times) and different modalities.
A flexible configuration approach is provided by the Ride platform for creating simulation scenarios with concrete demand and supply settings. From the demand’s perspective, the default implementation requires transport demand, i.e., trips with, at least, information about origin, destination and departure time, to be know in advance by the Ride platform. During the simulation and once any trip is about to start, the simulator (client) generates a request for travel and calls the integrator modules (servers) for information with regards to the trip’s stages, i.e., the sequential trip legs to be performed with a specific mode type along with their origin and destination locations. However, Ride further offers the possibility to communicate trips and trip legs dynamically at simulation run-time without the need to know the demand in advance (e.g., for within-day demand re-evaluation scenarios) – in that case the integrator modules (clients) call Aimsun Ride (server) to simulate specific trips at different time intervals. From a supply and infrastructure standpoint, Aimsun Ride requires as input the supply network model (road and transit network infrastructure with travel times and timetables) along with information about service areas, service stations (e.g., for bike-sharing) and fleet specifications for each type of service (types, number and initial vehicle locations).
To enable the evaluation of system performance at post-simulation stages, Aimsun Ride generates, mainly, two output files (besides other network performance-related data):
1. An event log file with a complete list of events related to the simulated trips for different modes, including, among others, detailed information on travel states, agent positions, vehicle capacities and the simulated paths for each trip stage.
2. An optional recording file to visualize the simulation results within Aimsun Next’s graphical user interface.
The application of Aimsun Ride in the HARMONY project will enable the simulation-based evaluation of new passenger and freight transport concepts and their impact on congestion and air quality, including scenarios for 1) Autonomous Demand Responsive Transit (DRT) and MaaS services for the city of Oxford, UK, and 2) Microhubs for Urban Delivery services in the centre of Rotterdam, NL. The network scope and service areas that have been defined for these use-cases – supported and advised by the Oxfordshire and Rotterdam City Councils – are illustrated in Figures 2 and 3. Modelling these areas facilitates leveraging prior work, support utilization of the models in other projects and ensure its compatibility with other models available in Oxford and Rotterdam cities towards freight transport and passenger mobility planning.